

In order to finish defining schemes, we need to define sheaves, which are an important part of The data of a scheme. We first define sheaves very generally for any topological space, and then in the next section give the important example of the structure sheaf on a scheme.

Motivating example: differentiable functions

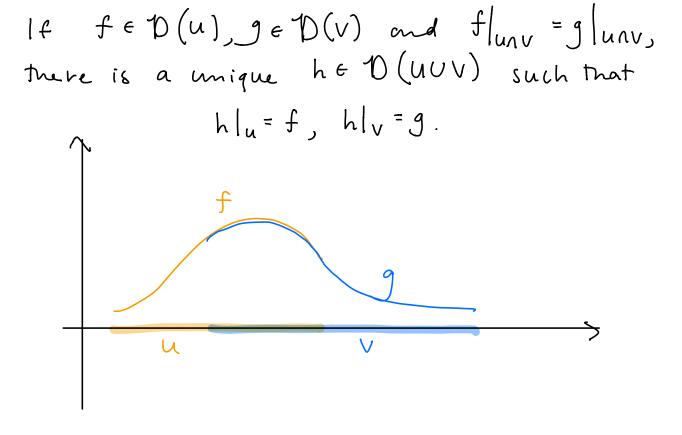
A natural example that you have all seen (in some capacity) is the sheaf of differentiable functions on a manifold, or even just on IR:

On each open set U, let D(u) be the group of differentiable functions $f: U \rightarrow \mathbb{R}$.

So, e.g.
$$f(x) = \frac{1}{x} \in \mathcal{D}(\mathbb{R} - \{0\})$$
 but not in $\mathbb{D}(\mathbb{R})$.

For $U \subseteq V$ open sets, there is a natural group homomorphism $D(V) \rightarrow D(U)$ given by the restriction $f \mapsto f|_{U}$.

Note that these functions can be "glued" together as follows:



We can explicitly define it as

$$h(x) = \begin{cases} f(x) & \text{if } x \in U \\ g(x) & \text{if } x \in V \end{cases}$$

This is a good example to keep in mind as we give the following general (and almost inscrutably abstract) definitions.

For the remainder of this section, let X be a topological space.

1.) for every open set UEX, an abelian group Hu), called the sections over U, and

2.) for every inclusion
$$V \subseteq U$$
 of open sets of X,
a group homomorphism
 $P_{uv} : \widehat{F}(U) \longrightarrow \widehat{F}(V), \overset{*}{}$
called a restriction map,
which satisfy the following:
• $\widehat{F}(\phi) = 0,$
• $P_{uu} : \widehat{F}(u) \longrightarrow \widehat{F}(U)$ is the identity map, and
• if $W \subseteq V \subseteq U$ are open sets, then
 $P_{uw} = P_{vw} \cdot P_{uv},$
i.e. the following diagram commutes
 $\widehat{F}(u) \xrightarrow{P_{uv}} \widehat{F}(v)$
 $\widehat{F}(w)$

This gives a def of a presheaf of abelian groups, but you can replace abelian groups w/ rings, sets, or objects from any other fixed calegory.

A sheaf is a presheaf where the sections are determined by "local data". More precisely:

Def: A presheaf I on X is a sheaf if it

Note: 1.) implies s in 2.) 18 unique:
suppose s and t both work. Then

$$s|_{v_i} = t|_{v_i} = s_i$$
 for each i, so $(s-t)|_{v_i} = 0$ for each i,
so $s-t = 0 \Longrightarrow s=t$.

Remark: One of the perks of the additional conditions required for sheaves is that it allows us to uniquely describe a sheaf by only giving the sections on a basis.

Example: Regular functions on an (affine) variety. Let $X \subseteq A^n$ be an affine variety defined X = V(I), I some radical ideal.

For each open set
$$U \subseteq X$$
, let $O(u)$ be the ring of regular functions $U \rightarrow k$, and for $V \subseteq U$,
 $P_{uv}: O(u) \rightarrow O(v)$ the restriction map.

Check: this is a sheaf, called the <u>sheaf of regular functions</u> on X.

Notice: $\mathcal{O}(X) = k[x_1, \dots, x_n]/I = \Gamma(X).$

What is O(u) if $U = X \setminus V(f)$?

Each $\mathcal{O}(u) \subseteq k(x)$, the field of rational functions on X (which in this case is just the field of fractions of $\Gamma(X)$). $\frac{q}{h}$ is regular on U as long as h only vanishes $\frac{q}{h}$ is regular on U. i.e. $\mathcal{O}(u) = \Gamma(x) \begin{bmatrix} 1 \\ -F \end{bmatrix}$. (check this!) (can you figure out what $\mathcal{O}(u)$ is for $U = X \setminus V(I)$?)

We will see that the structure sheaf on SpecR generalizes this - more details in the next section. EX: Constant functions. Consider X a topological space and $F(u) = \pi$ for every $U \subseteq X$ open, except $F(\phi) = 0$.

For $\not{p}_{\neq}V \subseteq U$, define $p_{uv} = id_{\mathcal{R}}$. This is a presheaf, but it is not a sheaf:

let U, U2 be disjoint nonempty open sets.

Let $S_1 = I \in \mathcal{F}(U_1)$, and $S_2 = O \in \mathcal{F}(U_2)$.

Then $S_1|_{u_1 \cap u_2} = O = S_2|_{u_1 \cap u_2}$, since $U_1 \cap U_2 = \emptyset$.

However, there is no section over U,UUz that restricts to I on U, and O on Uz.

We can "fix" this as follows:

Define the sheaf of locally constant functions $\mathcal{F}'(\alpha) = 0$, and for $\phi \neq U \subseteq X$ open, $\mathcal{F}'(\alpha) = \{f: U \rightarrow \mathcal{T} \mid f(x) = f(y) \text{ if } x, y \text{ in } same connected comp.of y\}$ and the restriction maps are just the usual restrictions of functions.

of functions.
Then
$$f'(u) = \prod_{i \in I} \mathbb{Z}$$
,
where I indexes the connected
components of U . (Check: f' is a sheaf.)

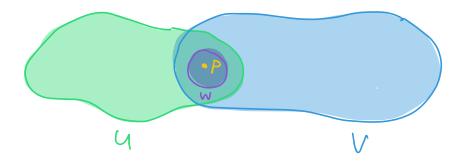
Direct limits and stalks

If F is a presheat on X and PEX, The stalk of Fat P captures the behavior of F "hear" P.

How do we do this? Look at sections of open sets containing P that agree on th intersection. To make this precise, we need the direct limit.

Def: The stalk Fp of J at P is the direct limit of The $\mathcal{F}(\mathcal{U})$ for all open sets $\mathcal{U} \subseteq X$ containing P. That is,

$$\begin{aligned} \mathcal{F}_{p} &:= \lim_{u \to p} \mathcal{F}(u) \\ &:= \left\{ \left(\mathcal{U}, f \in \mathcal{F}(u) \right) \right\} / \\ & \text{where} \\ \left(\mathcal{U}, f \in \mathcal{F}(u) \right) & \left(\mathcal{V}, g \in \mathcal{F}(v) \right) \\ & \text{if There is an open } \mathcal{W} \subseteq \mathcal{U} \cap \mathcal{V} \text{ containing } \\ & \text{s.t. } f |_{w} = g |_{w}. \end{aligned}$$



So an element $s_p \in \mathcal{F}_p$ can be represented by a section $s \in \mathcal{F}(U)$ for some $U \ge P$. We call s_p the germ of the section s at P.

EX: Consider the sheat of regular functions
$$O$$
 on A^2 ,
as described above. Let $P=(0,0)$. What is O_p ?
Since $O(U) \subseteq k(A^2)$ for each U, we have

$$\mathcal{O}_p \subseteq k(\mathbb{A}^2)$$
 as well.

Notice: $\frac{f}{g} \in \mathcal{O}_{p} \iff$ it is regular in a neighborhood of P $\iff it$ is regular at P(check!)

so the holumits are of the form $\frac{f_i x + f_z y}{g}$, where $g \notin (x, y)$. \rightarrow The nonumits form an ideal (x, y), so \mathcal{O}_p is a local ring w/ max'l ideal (x, y).